Photoproduction of eta mesons off protons at CB-ELSA

A. WOODARD, V. CREDE, A. MCVEIGH, Florida State University, CB-ELSA COLLABORATION — QCD-inspired models predict more states in the hadron mass spectrum than have been seen experimentally. Models show that some of these states should be observed in photoproduction experiments, thus providing a sensitive tool to study hadron properties. Baryon resonances have broad, overlapping widths. Photoproduction of η mesons serves as an isospin filter; the η meson has isospin \(I = 0 \) and for this reason, isospin conservation guarantees that the \(N\eta \) final state can only be reached via formation of \(N^* \) resonances. Contributions from \(Δ^* \) states with \(I = 3/2 \) are excluded. We used the Crystal-Barrel Detector (CsI(Tl) calorimeter) at ELSA to determine the cross-section of the reaction \(\gamma p \rightarrow η p \) studying the \(η \) in its two neutral decay modes (\(η \rightarrow 3π^0 \rightarrow 6γ \) and \(η \rightarrow 2γ \)) for photon incoming energies in the range of \(E_γ = 850 − 3000 \text{ MeV} \). In this experiment, the Two-Armed Photon Spectrometer (TAPS) was placed in the forward direction. This BaF\(_2\) calorimeter serves as a fast trigger and increases the overall angular coverage to essentially the full \(4\pi \) solid angle. We present differential cross sections for η photoproduction off the proton for \((−1 < \cos θ_η^{\text{cms}} < 1) \). Approximately 600,000 events have been identified. Preliminary results of a partial wave analysis are discussed.

\(^1\)This work is supported by NSF grant PHY-04-56463.

Anna Woodard
Florida State University

Date submitted: 01 Aug 2007