Abstract Submitted for the DNP08 Meeting of The American Physical Society

 β -delayed p-decay of proton-rich nuclei ²³Al and ³¹Cl and explosive H-burning in novae¹ L. TRACHE, A. BANU, J.C. HARDY, M. MC-CLESKEY, E. SIMMONS, G. TABACARU, R.E. TRIBBLE, Texas A&M University, J. AYSTO, A. JOKINEN, A. SAASTAMOINEN, Univ. of Jyvaskyla, Finland, T. DAVINSON, P.J. WOODS, Univ. of Edinburgh, UK, L. ACHOURI, B. ROEDER, LPC Caen, France — We developed a technique to measure β -delayed proton-decay of proton-rich nuclei produced and separated with MARS at TAMU. In particular, we studied the decay of ²³Al and ³¹Cl, both important for understanding explosive H-burning in novae. We have pulsed the beam, implanting the source nuclei moving at about 40 MeV/u in a thin Si strip detector, and then measured β -p and $\beta - \gamma$ coincidences simultaneously. The states populated above the proton threshold in ²³Mg and ³¹S, respectively, may proton decay. They are resonances in the reaction 22 Na(p, γ) 23 Mg (crucial for the depletion of 22 Na in ONe novae) and in ${}^{30}P(p,\gamma){}^{31}S$ (critical point in explosive H-burning in novae), but the protons emitted have very low energies, starting at about 200 keV, an experimental challenge. The setup and the results are described. The β -decay schemes were established for both nuclei, and IAS identified. The technique has shown a remarkable selectivity to β -delayed charged particle emission and shown to work even at radioactive beam rates of a few pps, for rare isotopes with lifetimes as low as 10s msec.

¹Supported by US DOE.

Livius Trache Texas A&M University

Date submitted: 30 May 2008

Electronic form version 1.4