Abstract Submitted
for the DNP08 Meeting of
The American Physical Society

Studying Electron-Capture on \(^{64}\text{Zn}\) in Supernovae with the \((t,^{3}\text{He})\) Charge-Exchange Reaction\(^1\) G.W. HITT, SAM M. AUSTIN, D. BAZIN, A. GADE, C.J. GUESS, D. GALAVIZ-REDONDO, Y. SHIMBARA, C. TUR, R.G.T. ZEGERS, Michigan State University and National Superconducting Cyclotron Laboratory, M. HOROI, Central Michigan University, M.E. HOWARD, E.E. SMITH, The Ohio State University — A secondary, 115 MeV/u triton beam has been developed at NSCL for use in \((t,^{3}\text{He})\) charge-exchange (CE) reaction studies. This \((n,p)\)-type CE reaction is useful for extracting the full Gamow-Teller (GT) response of the nucleus, overcoming Q-value restrictions present in conventional beta-decay studies. The strength \((B(GT))\) in \(^{64}\text{Cu}\) has been determined from the absolute cross section measurement of \(^{64}\text{Zn}(t,^{3}\text{He})\) near zero-degrees, exploiting an empirical proportionality between cross section and \(B(GT)\). The detailed features of the \(B(GT)\) distribution in a nucleus has an important impact on electron-capture (EC) rates in Type Ia and Core-Collapse supernovae. The measured \(B(GT)\) in \(^{64}\text{Cu}\) is directly compared with the results of modern shell model interactions which are used to calculate the GT contribution to EC on nuclei in supernova simulations.

\(^1\)We thank NSCL operations staff and US-NSF support through grants PHY0216783 and PHY0606007.

G.W. Hitt
Michigan State University and National Superconducting Cyclotron Laboratory

Date submitted: 26 Jun 2008
Electronic form version 1.4