DNP08-2008-000145

Abstract for an Invited Paper for the DNP08 Meeting of the American Physical Society

Search for Medium Modifications of the Light Vector Mesons at Jefferson Lab

MICHAEL WOOD, Canisius College, for the CLAS Collaboration

The E01-112 experiment at the Thomas Jefferson National Laboratory was an investigation of the properties of light vector mesons in dense nuclear matter, such as a shift in their masses and/or broadening of their widths. Theoretical calculations relate the modifications to partial restoration of chiral symmetry at high density or temperature. In the experiment, the ρ , ω , and ϕ mesons were photo-produced of off ²H, C, Ti, Fe, and Pb targets and reconstructed with the CEBAF Large Acceptance Spectrometer (CLAS). The incident beam was tagged photons with energies up to 4 GeV. The mesons were detected via their rare leptonic decay to e^+e^- . This decay channel is preferred over hadronic modes in order to eliminate final state interactions in the nuclear matter. The ρ meson mass spectrum was extracted after the subtraction of a combinatorial background and after the removal of the ω and ϕ signals in a nearly model-independent way. The ρ mass spectra from the heavy targets (A > 2) were compared with the mass spectrum extracted from the deuterium target. We obtain a mass-shift compatible with zero for the ρ meson. For the ρ -mesons widths, our result is consistent with standard nuclear many-body effects, i.e. collisional broadening and Fermi motion. Even though the ω and ϕ mesons have a high probability of decaying outside the nucleus in their vacuum state, their in-medium widths can be accessed through their absorption inside the nucleus. The signature of absorption is a decrease of the nuclear transparencies of these mesons as a function of the number of target nucleons. Preliminary results indicate a substantial widening of the ω and ϕ mesons in the medium.