Abstract Submitted for the DNP08 Meeting of The American Physical Society

Measurements of High p_T Identified Hadron v_2 in Au+Au Collisions at $\sqrt{S_{NN}} = 200$ GeV by the PHENIX Experiment SHENGLI HUANG, PHENIX Collaboration — Measurements of the elliptic flow v_2 at RHIC have provided sensitive information about the earliest stages dynamics of heavy ion collisions. The v_2 of identified hadrons has been found empirically to scale with the number of constituent quarks at low p_T , providing evidence that partonic degrees of freedom determine the early dynamics of the system. The measurement of high p_T identified hadrons v_2 will allow us to further test this scaling. It will provide the information on the limits of applicability of the hydrodynamic description of the system dynamics. The difference of v_2 between the K^+ , K^- and the proton, anti-proton at high p_T will also provide the information about the particle production and dynamics mechanism. In that the K^- and anti-proton are mainly from gluon fragmentation, while the K^+ and proton are mainly from light quark fragmentation. In this talk, we will present measurements of pion, kaon and proton v_2 to p_T of 6GeV/c as a function of centrality in Au + Au collisions at $\sqrt{S_{NN}} = 200$ GeV. The constituent quark scaling will be tested by these new measurements in the different centrality bins. The v_2 difference between the K^+ , K^- and the proton, anti-proton will also be studied as a function of p_T and centrality.

> Shengli Huang PHENIX Collaboration

Date submitted: 30 Jun 2008 Electronic form version 1.4