Impulse Approximation limitations to the \((e,e'p)\) reaction on ^{208}Pb: identifying relativistic effects in the nuclear medium via A_{TL} measurements

ALEXANDRE CAMSONNE, Jefferson National Accelerator Facility, Newport News, VA, JUAN CARLOS CORNEJO, California State University, Los Angeles, JOAQUIN LOPEZ HERRAIZ, Universidad Complutense de Madrid, Madrid, Spain, JEFFERSON LAB, HALL A COLLABORATION — Experiment E06007 at Jefferson Lab measured cross sections for the \((e,e'p)\) reaction at constant \((q,\omega)\) for $Q^2 = 0.81 \text{ GeV}^2$ over a range of missing momenta from 0 to $\pm 500 \text{ MeV}/c$. A controversial issue over the last decades has been the role of relativity in the description of nuclei. A distinctive signature of dynamical relativistic effects in the nucleon wave function is the asymmetry, A_{TL} in the cross section measured forward or backward of the three momentum transfer q. Results for the integrated cross sections for producing the low lying states of ^{207}Tl for both positive and negative missing momenta will be presented and compared to relativistic and nonrelativistic theoretical predictions.