Abstract Submitted for the DNP08 Meeting of The American Physical Society

Beta Decay Studies of Neutron-Rich Nuclei near 52 Ca¹ H.L. CRAWFORD, P.F. MANTICA, G.F. GRINYER, K. MINAMISONO, J.S. PINTER, J.B. STOKER, NSCL/MSU, R.V.F. JANSSENS, M. CARPENTER, B. KAY, T. LAURITSEN, S. ZHU, Argonne National Laboratory, R. BRODA, B. FORNAL, Institute of Nuclear Physics, Polish Academy of Sciences, N. HOTELING, I. STE-FANESCU, Argonne National Laboratory/U. of Maryland, W.B. WALTERS, U. of Maryland — The β decay and isomeric properties of neutron-rich nuclei near semi-magic 52 Ca were studied at NSCL. The presence of a significant energy gap, separating the neutron $f_{5/2}$ and $p_{1/2}$ single-particle states from the $p_{3/2}$ level at N=32, has a stabilizing effect on the low-energy structure of nuclides in this region. We report the results for the low-energy structure of 50 K, which has one proton hole and one neutron hole outside 52 Ca, determined from isomeric decay. We also discuss new levels in 53 Sc, one proton outside 52 Ca, populated following the β decay of 53 Ca. Both findings reinforce previous evidence for the doubly-magic character of the 52 Ca core.

¹Work was supported in part by NSF under Grant No. PHY06-06007 and by U.S. DOE, Office of Nuclear Physics, under contracts No. DE-AC02-06CH11357 (ANL) and DEFG02-94ER40834 (U. Maryland) and by the Polish Scientific Committee grant 1PO3B 059 29.

Heather Crawford NSCL/MSU

Date submitted: 01 Jul 2008

Electronic form version 1.4