Abstract Submitted for the DNP08 Meeting of The American Physical Society

Octupole correlations in light neutron-rich ^{143,144}La¹ Y.X. LUO², J.H. HAMILTON, Vanderbilt University, J.O. RASMUSSEN, Lawrence Berkeley National Lab, A.V. RAMAYYA, Vanderbilt University, S.J. ZHU, Tsinghua University, Beijing, China, J.K. HWANG, Vanderbilt University — Intensive investigations have shown strong evidence of octupole deformations and/or correlations in ^{142–148}Ba, ^{144,146}Cs and ^{145,147}La. In the present work the high-spin level scheme of light neutron-rich ¹⁴³La is expanded and that of ¹⁴⁴La is proposed for the first time by measuring prompt gamma rays from the spontaneous fission of ²⁵²Cf at Gammasphere. B(E1)/B(E2) ratios, energy displacement $\delta E(I)$ and the rotational frequency ratios $\omega^{-}(I)/\omega^{+}(I)$ of the new parity-doublets of ^{143,144}La indicate that octupole correlations also develop in these light neutron-rich La isotopes. Based on CSM calculations the band-crossings observed in a rotational frequency range of 0.31 to 0.34 MeV for the two even-parity bands in ¹⁴³La are interpreted as due to alignment of a pair of $i_{13/2}$ neutrons in the nucleus.

 $^1 \mathrm{U.S.}$ DOE and National Natural Science Foundation of China $^2 \mathrm{also}\ \mathrm{LBNL}$

John Rasmussen Lawrence Berkeley National Lab

Date submitted: 01 Jul 2008

Electronic form version 1.4