Abstract Submitted for the DNP08 Meeting of The American Physical Society

The concept of barrier in nuclear fission GENEVIEVE MOUZE, CHRISTIAN YTHIER, Université de Nice, 06108 Nice cedex 2, France — An internal fission barrier can exist in a heavy nucleus if its internal energy, resulting from its internal dissociation into a dinuclear system, is not great enough for inducing a rearrangement into fragment pairs. But there exists also an external fission barrier, which is defined for a fission into a given pair "i". The study of ²⁵⁸Fm (s.f.) has shown that B_c^f (i), equal to B_c (i) – Q_{tot} (i), i.e. to the difference between Coulomb barrier and fission energy of the pair "i", is still negative, after sphericity correction, for its most energy-rich pairs ¹²⁸Sn-¹³⁰Sn and ¹²⁶Sn-¹³²Sn;this explains the considerable fission yield of ²⁵⁸Fm at A ~129. For the system ²³⁵U + n_{th}, the B_c^f (i)'s are positive for all possible fragment pairs, since B_c^f (i) is already positive, and equal to 2.73 Mev, for the most energy-rich pair ¹³²Sn-¹⁰⁴Mo; but a sphericity correction of about 3 MeV is necessary for the presence of the tin nucleus: this suggests that the reported value of 5.80 MeV of the "fission barrier" of ²³⁵U + n_{th} is nothing else but its smallest external fission barrier, after sphericity correction.

> Genevieve Mouze Universite de Nice

Date submitted: 01 Jul 2008

Electronic form version 1.4