A bottom-up strategy to extract generalized parton distributions from experiment\cite{1} SIMONETTA LIUTI, University of Virginia — We will present a bottom-up strategy to extract generalized parton distributions in the non-singlet sector from Deeply Virtual Compton Scattering data \cite{1,2}. Our approach makes use of all available experimental information on both the proton and neutron form factors, and on the (inclusive) deep inelastic structure functions within a flexible parameterization based on a Regge-improved diquark model. Additional constraints provided by lattice calculations of the n=2,3 moments of generalized parton distributions are implemented through a reconstruction method based on orthogonal polynomials. Q^2 evolution, polynomiality, as well as a new set of constraints provided by dispersion relations \cite{3} are also discussed. \cite{1} S. Ahmad, H. Honkanen, S. Liuti and S. K. Taneja, arXiv:0708.0268 [hep-ph]. \cite{2} S. Ahmad, H. Honkanen, S. Liuti and S. K. Taneja, Phys. Rev. D 75, 094003 (2007) \cite{3} M. Diehl and D. Y. Ivanov, Eur. Phys. J. C 52, 919 (2007)

\cite{1}DE-FG02-01ER41200

Simonetta Liuti
University of Virginia

Date submitted: 01 Jul 2008