Abstract Submitted for the DNP08 Meeting of The American Physical Society

High-spin states in ¹³⁵Cs N. FOTIADES, LANL, J.A. CIZEWSKI, Rutgers Univ., R. KRÜCKEN, T.U.München, R.M. CLARK, P. FALLON, I.Y. LEE, A.O. MACCHIAVELLI, LBNL, J.A. BECKER, W. YOUNES, LLNL — High-spin states in 135 Cs have been studied following the fission of the 226 Th compound nucleus formed in a fusion-evaporation reaction (^{18}O at 91 MeV on ^{208}Pb). The Gammasphere array was used to detect γ -ray coincidences. A sequence of transitions was observed in coincidence with the previously known 786.8-keV, $11/2^+ \rightarrow 7/2^+$ transition from the 786.8-keV level of 135 Cs extending the level scheme up to spin 23/2and ~ 3.3 MeV excitation energy. The assignment of this sequence to 135 Cs is also supported by coincidences with known transitions in the complementary fragments. The observed experimental states are compared with states in the neighboring ¹³⁷Cs nucleus, as well as with the states in the Z=54 core of 134 Xe. The coupling of the odd proton occupying the $g_{7/2}$ orbital to the yrast states in ¹³⁴Xe can account for the first excited states of ¹³⁵Cs. This work was supported by the U.S. Department of Energy under Contracts No. DE-AC52-06NA25396 (LANL), DE-AC52-07NA27344 (LLNL) and AC03-76SF00098 (LBNL) and by the National Science Foundation (Rutgers).

> Walid Younes LLNL

Date submitted: 01 Jul 2008

Electronic form version 1.4