Abstract Submitted for the DNP08 Meeting of The American Physical Society

Yields and elliptic flow of $d(\overline{d})$ and ${}^{3}He(\overline{{}^{3}He})$ in Au+Au collisions at $\sqrt{s_{NN}} = 200 \ GeV$ JIANHANG ZHOU, Rice University, JACK ENGELAGE, U.C. Berkeley, HAIDONG LIU, ZHANGBU XU, Brookhaven National Lab, BNL RHIC STAR COLLABORATION — We present the transverse momentum (p_T) spectra and the coalescence parameters B_2 (related to collisional volume) for d, \overline{d} $(1 < p_T < 4 \ GeV/c)$ and B_3 for 3He , $\overline{{}^3He}$ $(2 < p_T < 6 \ GeV/c)$ at midrapidity in Au+Au collisions at $\sqrt{s_{NN}} = 200 \ GeV$ measured in the STAR experiment at RHIC. Spectra are in general agreement with the expected coalescence from nucleons with radial flow, but show softer p_T distribution than predictions from a Blast-Wave model. The coalescence parameters are found to track with pion HBT results in different collision geometry. The elliptic flow (v_2) measurement for $d(\overline{d})$ as a function of p_T is found to follow an approximate atomic mass number (A) scaling $(\chi^2/DoF = 3.1/2)$ while that of ${}^{3}He(\overline{{}^{3}He})$ deviates more from the scaling $(\chi^2/DoF = 4.3/2)$. A negative v_2 has been observed for \overline{d} at low p_T , consistent with large radial flow in Au+Au collisions. We note that the ratio of the primordial deuteron abundances measured in Big Bang Nucleosynthesis (BBN) to that measured in a collider experiment at zero chemical potential is $\Omega_{BBN/RHIC} = (D/H)_{BBN}/(\bar{d}/\bar{p})_{RHIC} = 0.036 \pm 0.004$. The very preliminary results from Cu+Cu collisions at $\sqrt{s_{NN}} = 200 \ GeV$ will also be compared to the Au+Au system, hence providing a study to system size dependence.

> Jianhang Zhou Rice University

Date submitted: 13 Aug 2008

Electronic form version 1.4