25Al levels observed in the 28Si(p,α)25Al reaction

S.T. PITTMAN, Univ. of Tenn., D.W. BARDAYAN, ORNL, J.C. BLACKMON, LSU, R.L. KOZUB, Tenn. Tech. Univ., M.S. SMITH, ORNL — The level structure of 25Al has been studied at the ORNL Holifield Radioactive Ion Beam Facility (HRIBF) by measuring the angular and energy distributions of alpha particles from the 28Si(p,α)25Al reaction. Proton beams (\sim10 nA) at laboratory energies of 40- and 42-MeV, respectively, were generated by the 25 MV tandem accelerator and bombarded a natural silicon target (50 μg/cm2). Alpha particles were detected and identified in the Silicon Detector Array (SIDAR) in the “telescope” configuration [1]. Angular distributions were extracted for strongly populated states, and distorted-wave Born approximation (DWBA) calculations were performed using the code DWUCK4 to determine spin and parity. Results of this experiment, including angular distributions of alpha particles and spin and parity assignments for 25Al excited states, will be discussed. [1] D.W. Bardayan et al., Phys. Rev. C 65, 032801(R) (2002). *This work was supported by research grants from the Department of Energy.