Abstract Submitted for the DNP08 Meeting of The American Physical Society

Distinguishing fissions of 239 Pu and 235 U with low-resolution detectors¹ E. SWANBERG, E.B. NORMAN, S.G. PRUSSIN, H. SHUGART, UC Berkeley, E. BROWNE, LBNL — When 239 Pu and 235 U undergo thermal neutron-induced fission, both produce significant numbers of β -delayed gamma rays with energies in the several MeV range. Experiments using high energy-resolution germanium detectors² have shown that it is possible to distinguish the fission of 239 Pu from that of 235 U. Using differences in the temporal behavior and in the shapes of the gamma-ray energy spectra, we show that these two isotopes can also be differentiated using low-resolution plastic or liquid scintillators. It is likely this method could be extended to homeland security applications, such as screening of cargo containers for 235 U and 239 Pu, using a neutron source and such scintillators.

 $^1\mathrm{Supported}$ in part by the US Dept. of Energy and US Dept. of Homeland Security. $^2\mathrm{R.}$ E. Marrs et~al., Nucl. Instr. & Meth. A (in press).

Eric Norman Univ. of California at Berkeley

Date submitted: 01 Jul 2008 Electronic form version 1.4