Studying the structure of the neutron-unbound 12Li

A. SPYROU, M. THOENNESSEN, NSCL/MSU, P.A. DEYOUNG, C.C. HALL, Hope College, MONA COLLABORATION — The decay-energy spectrum of 12Li was measured in a neutron-fragment coincidence experiment at the National Superconducting Cyclotron Laboratory at MSU. 12Li was produced in the two-proton knockout reaction from a 14B secondary beam at 54 MeV/u. 12Li is neutron unbound and decays into 11Li and a neutron. The 11Li fragments were detected with position sensitive detectors behind the sweeper magnet, while the Modular Neutron Array (MoNA) was used to detect the emitted neutrons. The decay energy of 12Li was reconstructed event-by-event from the four-momentum vectors of the two products. Two resonances were observed in the invariant-mass spectrum at ~ 200 keV and ~ 500 keV. The measurement of the structure of 12Li is an essential first step for the understanding of the two-neutron decay mode of 13Li. The latter was also measured during the experiment in the one-proton knockout reaction from 14Be and the analysis is in progress.