Abstract Submitted for the DNP08 Meeting of The American Physical Society

Probing Nucleosynthesis in Novae: 22 Na(p, γ) 23 Mg A.L. SAL-LASKA, D.W. STORM, A. GARCIA, T.A.D. BROWN, K.A. SNOVER, C. WREDE, K. DERYCKX, University of Washington, C. RUIZ, D.A. HUTCHEON, L. BUCHMANN, D.F. OTTEWELL, C. VOCKENHUBER, TRIUMF, J.A. CAGGIANO, PNNL — Orbiting gamma ray telescopes have yet to observe the elusive ²²Na isotope. More sensitive observatories are planned, and present uncertainties in the dominant destructive reaction, 22 Na(p, γ), suggest new measurements in the proton energy range of 150 to 300 keV are needed to clarify the predictions of the amount of ²²Na expected in a nova explosion. In particular, a state in ²³Mg reported by Jenkins [1] implies a possible resonance at $E_p = 198$ keV which could be significant. We are in the process of measuring the ${}^{22}Na(p,\gamma)$ reaction rate directly by using protons from the UW tandem on a specially designed beamline, which includes rastering and cold vacuum protection of the ²²Na implanted targets, fabricated at TRIUMF. A multitude of target tests have been performed with stable ²³Na, focusing on sodium stability with respect to sputtering and heating caused by our high intensity beam. Utilizing two 100% Ge detectors with anticoincidence shields to reduce cosmic backgrounds, preliminary measurements have been performed on known resonances of ²²Na, as well as on the proposed new resonance. Results will be presented. [1] Jenkins et al., PRL 92 (2004) 031101

> Anne Sallaska University of Washington

Date submitted: 13 Aug 2008

Electronic form version 1.4