Abstract Submitted for the DNP08 Meeting of The American Physical Society

Study of 0^+ States and Collectivity in ¹⁵⁴Gd by the (p,t γ) Reaction J.M. ALLMOND, University of Richmond, VA, STARS LIBERACE COLLAB-ORATION — Recent experiments [1] have revealed an unusual number of low-lying 0⁺ states (< 3 MeV) in a number of rare-earth nuclei, including ^{154,156}Gd. Indeed, the structure of these and neighboring $(N \sim 90)$ nuclei have been of recent interest [2]. To investigate the decay and population of these 0^+ states, an experiment was conducted at the 88" cyclotron at LBNL using the STARS and LiBerACE detector arrays. A 25 MeV proton beam incident onto a ¹⁵⁶Gd target was used to populate states in 154 Gd by the $(p,t\gamma)$ reaction and 156 Gd by $(p,p'\gamma)$. The exit channel of the reaction and the residual excitation energy of the nucleus were tagged by detecting scattered charged particles in a Si telescope array (STARS) while coincident γ rays were detected using 6 Ge clovers and 1 Ge LEPS detector of the LiBerACE array. Branching ratios, population distributions, and particle- γ correlations are used to probe the nature of 0⁺ states and collectivity in ¹⁵⁴Gd.Preliminary results are presented. DE-FG52-06NA26206 (UR), DE-AC52-07NA27344 (LLNL), and DE-AC02-05CH11231 (LBNL).

[1]S.R. Lesher, et al., Phys. Rev. C **66**, 051305 (2002); D.A. Meyer, et al., Phys. Rev. C **74**, 044309(2006).

[2]W.D. Kulp, et al., Phys. Rev. Lett. **91**, 102501(2003); W.D. Kulp, et al., Phys. Rev. C **77**, 061301(2008).

J.M. Allmond University of Richmond, VA

Date submitted: 02 Jul 2008 Electronic form version 1.4