Abstract Submitted for the DNP08 Meeting of The American Physical Society

Dynamical coupled channel calculation of pion and omega production¹ MARK PARIS, Jefferson Lab — The dynamical coupled channel approach developed at the Excited Baryon Analysis Center is extended to include the ωN channel to study π and ω -meson production induced by scattering pions and photons from the proton. Six intermediate channels, including πN , ηN , $\pi \Delta$, σN , ρN , ωN , are employed to describe unpolarized and polarized data. Bare parameters in an effective hadronic Lagrangian are determined in a fit to the data for $\pi N \to \pi N$, $\gamma N \to \pi N$, $\pi^- p \to \omega N$, and $\gamma p \to \omega p$ reactions at center-of-mass energies from threshold to W < 2.0 GeV. The T matrix determined in these fits is used to calculate the photon beam asymmetry for ω -meson production and the $\omega N \to \omega N$ total cross section and ωN scattering lengths. The calculated beam asymmetry is in good agreement with the observed in the range of energies near threshold to W < 2.0 GeV.

¹This work is supported by the U.S. Department of Energy, Office of Nuclear Physics Division.

Mark Paris Jefferson Lab

Date submitted: 02 Jul 2008

Electronic form version 1.4