Refinement of Global Phase-Shift Analysis for $p + ^3\text{He}$ Elastic Scattering Using Spin-Correlation Coefficients1 TIM DANIELS, CHARLES ARNOLD, JOHN CESARATTO, THOMAS CLEGG, ALEXANDER COUTURE, ASTRID IMIG, HUGON KARWOWSKI, University of North Carolina at Chapel Hill and Triangle Universities Nuclear Laboratory — As part of an investigation of the $A=4$ system, we measured the spin-correlation coefficients A_{xy}, A_{oy}, A_{yy}, and A_{xx} for $p-^3\text{He}$ elastic scattering at E_{lab} of 2.3, 2.7, 4.0, and 5.5 MeV and Θ_{lab} between 30° and 150°. The data were taken using TUNL’s atomic beam polarized ion source and our spin-exchange optical pumping polarized ^3He target2. We aim to resolve ambiguities in the phase shifts of George and Knutson3, which seem most sensitive to A_{xx} and A_{yy} at the lowest of these energies. Our measurements will be shown with phase-shift-analysis solutions, as well as some discussion of systematic effects related to the steering of charged particles by the target’s magnetic field.

1Work supported in part by USDOE grant #DE-FG02-97ER41041.