Static Magnetic and Quadrupole Moments of Excited States of Nuclei

SEAN YEAGER, LARRY ZAMICK, YITZHAK SHARON, Rutgers University — The gyromagnetic ratio \(g \) is the ratio of \(\mu \) to \(J \). We have noticed that many isoscalar \(g \) factors of excited states in both even-even and odd-odd nuclei have values close to 0.5 nuclear magnetons. It should be noted that both the collective model and the single \(j \) shell model (in the limit of large orbital angular momentum \(l \)) predict this result. We also note the importance of the “\(l \) forbidden” \([Y^2\sigma]\) term for magnetic moments. For quadrupole moments we define the quadrupole ratio, \(Q_0(S) / Q_0(B) \) i.e. the ratio between the intrinsic quadrupole moment deduced from \(2^+ \) states and from \(B(E2) \). Ideally, the rotational model predicts a value of one for the quadrupole ratio while the simple vibrational model predicts zero. The poster will show a graph plotting this ratio against mass number. There are small regions where the ratio is close to zero and \(\frac{E(4)}{E(2)} \) is close to two. Also, there are regions where the quadrupole ratio is close to one and \(\frac{E(4)}{E(2)} \) is close to \(\frac{10}{3} \). Yet there are intermediate regions which lie in between these two limits. This theoretical analysis is of relevance to the experimental program of Prof. Noemie Koller at Rutgers University.

\(^1\)Support from the Aresty Program at Rutgers is gratefully acknowledged.