Abstract Submitted for the DNP08 Meeting of The American Physical Society

New measurements of γ -ray branching ratios in the β^+ decay of ³²Cl¹ MARK HERNBERG, University of Iowa, DAN MELCONIAN, Texas A&M University — We have determined the γ -ray branching ratios in the β^+ decay of ³²Cl using a high-purity Germanium (HPGe) detector at the Texas A&M University Cyclotron. Our experiment was motivated by a recent measurement of isospin symmetry breaking correction (δ_c) in ³²Ar which has implications for the extraction of V_{ud} from other superallowed decays. The experimental result for this superallowed decay $[\delta_c = (2.0 + /- 0.8)\%]$ agrees with the theoretical predictions but is not a stringent test of theory. By measuring the γ -ray branching ratios in the β^+ decay of 32 Cl (a decay product of 32 Ar) the detector efficiencies can be better determined allowing for a more precise determination of δ_c . Furthermore these branching ratios are important in the study of various nuclear decay schemes and transition rates. Previous measurements of the β^+ decay of ³²Cl are 35 years old and contain uncertainties of up to 40%. Our preliminary results agree with past data and additionally we've identified previously unseen branches and reduced the uncertainties by an order of magnitude.

¹This research was supported by a grant from the National Science Foundation.

Mark Hernberg University of Iowa

Date submitted: 01 Aug 2008 Electronic form version 1.4