Gamma Detection Efficiency of a State-of-the-Art Ge Detector
ERIKA NAVARRO, CARL GAGLIARDI, ADRIANA BANU, Wellesley College
— An experiment to determine the ground state spin of the exotic nucleus 23Al is presented. By analyzing the spectra of the emitted gamma rays of the core nucleus 22Mg arising from the reaction 22Mg($p^+, \gamma)^{23}$Al, the higher energy levels of the 22Mg and their associated spin (j) values are determined. Subsequently, the need to precisely calibrate the EXOGAM Ge clovers to accurately determine these gamma ray energies, and therefore draw conclusions about the separation between nuclear shell levels, is met. Using careful analysis of gamma ray spectra and precise calibration of Ge detectors, resulting momentum distributions indicate a ground state spin of $5/2^+$. This both rejects the theory of halo structure of the 23Al exotic nucleus, and is consistent with previous experimental results strengthening the case for the use of mirror symmetry in nuclear astrophysics in systems otherwise not accessible.

Erika Navarro
Wellesley College

Date submitted: 14 Aug 2008