Abstract Submitted for the DNP10 Meeting of The American Physical Society

Determination of the stellar reaction rates of ${}^{17}O(\alpha,n){}^{20}Ne$ and 17 O(α, γ)²¹Ne ANDREAS BEST, SASCHA FALAHAT, JOACHIM GOERRES, MICHAEL WIESCHER, University of Notre Dame — The reaction ${}^{16}O(n, \gamma){}^{17}O$ acts a neutron poison in the weak s-process by reducing the number of available neutrons in the stellar burning environment. The captured neutrons can be reemitted into the stellar environment via the reaction ${}^{17}O(n, n){}^{20}Ne$, weakening the poisoning effect of ¹⁶O. This channel competes with the reaction ${}^{17}O(\alpha, \gamma){}^{21}Ne$, so that in order to determine the strength of ¹⁶O as a neutron poison it is important to know the reaction of both channels. Only limited information is available on the ${}^{16}O(\alpha, n){}^{20}Ne$ and especially on the ${}^{16}O(\alpha, \gamma){}^{21}Ne$ reaction, which leads to large uncertainties in the determination of the abundance production of the weak s-process. The (α, n) channel has been measured in the energy range from 900 keV to 2300 keV using a high efficiency 4π neutron detector. To improve the efficiency determination of the detector the (α, n_1) channel has been measured separately via gamma-ray spectroscopy and the detector response to the resulting neutron energy distribution has been modeled in a Geant4 simulation. An initial measurement of the (α, γ) channel has been successfully completed and a second experiment using the new 5 HPGe detector array GEORGINA is in planning. Results of the finished experiments and the planned experiment will be discussed.

> Andreas Best University of Notre Dame

Date submitted: 28 Jun 2010

Electronic form version 1.4