Abstract Submitted for the DNP10 Meeting of The American Physical Society

Coulomb Excitation of 124,126,128 Sn(Z=50) on 12 C, 27 Al, and 50 Ti: Approaching the N=82 Shell Closure via N=74,76,78 1 J.M. ALLMOND, D.C. RADFORD, C. BAKTASH, J.C. BATCHELDER, A. GALINDO-URIBARRI, C.J. GROSS, P.A. HAUSLADEN, K. LAGERGREN, Y. LAROCHELLE, E. PADILLA-RODAL, C.-H. YU, Physics Division, Oak Ridge National Laboratory — The determination of $<0_1$ ||E2|| 2_1 | > matrix elements from the Coulomb excitation of 124,126,128 Sn(Z=50) on a 12 C target is presented. Furthermore, preliminary results are presented for the Coulomb excitation of 124,126,128 Sn on 27 Al and 50 Ti targets, which, combined with the results from the 12 C target, can provide an upper/lower limit for the 2_1^+ static quadrupole moments, $Q(2_1) = 0.758 \times <2_1$ ||E2|| 2_1 | > (expected to be ≈ 0). Indeed, accurate knowledge of 2_1^+ systematics, i.e., $E(2_1)$, $<0_1$ ||E2|| 2_1 | >, and $<2_1$ ||E2|| 2_1 | >, are essential for testing consistency in models (e.g., deformation) at and near the neutron-rich N=82 shell closure.

¹Research sponsored by the Office of Nuclear Physics, U.S. Department of Energy.

J.M. Allmond Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tn 37831

Date submitted: 30 Jun 2010 Electronic form version 1.4