Abstract Submitted for the DNP10 Meeting of The American Physical Society

New nuclide, ¹⁴F¹ V.Z. GOLDBERG, B.T. ROEDER, G.G. CHUBAR-IAN, A.A. ALHARBI, A. BANU, M.M. MCCLESKEY, E. SIMMONS, G. TABACARU, L. TRACHE, R.E. TRIBBLE, Texas A&M University, G.V. RO-GACHEV, E.D. JOHNSON, M.L. AVILA, J.P. MITCHELL, Florida State University, C. FU, Indiana University — Long ago the instability of ¹⁴F was estimated to be ~ 2.58 MeV. Recently, properties of ¹⁴F and other 2s-d shell nuclei were calculated in the framework of an ab-initio approach. However, no experimental data are available on ¹⁴F. We used the Thick Target Inverse Kinematics method (TTIK) to study the excitation function for the ${}^{13}O+p$ elastic scattering where ${}^{14}F$ is the compound nucleus. The ¹³O ($T_{1/2} = 8.6$ ms) secondary beam was made with intensity 5×10^3 pps via the ¹H(¹⁴N,2n) reaction with a ¹⁴N primary beam at 38 MeV/u from the Texas A&M Univ. cyclotron. To apply the TTIK method, we degraded the 13 O energy to 11 MeV/u. As a result of the study, we obtain data on the ground and several excited states in ¹⁴F, their excitation energies, quantum characteristics and the widths of the resonances. The mass excess of 14 F (M-E) was found to be 31960 ± 50 keV. ¹⁴F appeared to be more stable than the corresponding estimations based on different extrapolations. Probably the unexpected lower instability is a result of rather pure single particle structure of the ground state in ¹⁴F.

¹Supported by US DOE and US NSF.

V.Z. Goldberg Texas A&M University

Date submitted: 30 Jun 2010

Electronic form version 1.4