Fusion of 130Te and 58,64Ni near the Coulomb barrier

J.F. LIANG, J.M. ALLMOND, C.J. GROSS, K. LAGERGREN, P.E. MUELLER, D. SHAPIRA, R.L. VARNER, Physics Division, Oak Ridge National Laboratory — Large sub-barrier fusion enhancement has been observed in reactions where a large number of neutron transfer channels with positive Q-values exists. The fusion excitation functions for 130Te on 58Ni and 64Ni have been measured. The slope of the fusion excitation function for 130Te+58Ni was found to be less steep than that for 130Te+64Ni in the sub-barrier region. This may be related to the fact that there are ten neutron transfer channels with positive Q-values in 130Te+58Ni. In contrast, 130Te+64Ni has only one neutron transfer channel with a positive Q-value. A comparison of the sub-barrier fusion enhancement and the number of neutron transfer channels with positive Q-values in other reactions will be presented.

1Oak Ridge National Laboratory is supported by the U.S. Department of Energy under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

Junjien Liang
Physics Division, Oak Ridge National Laboratory

Date submitted: 01 Jul 2010