Abstract Submitted for the DNP10 Meeting of The American Physical Society

Fusion of ¹³⁰Te and ^{58,64}Ni near the Coulomb barrier¹ J.F. LIANG, J.M. ALLMOND, C.J. GROSS, K. LAGERGREN, P.E. MUELLER, D. SHAPIRA, R.L. VARNER, Physics Division, Oak Ridge National Laboratory — Large subbarrier fusion enhancement has been observed in reactions where a large number of neutron transfer channels with positive Q-values exists. The fusion excitation functions for ¹³⁰Te on ⁵⁸Ni and ⁶⁴Ni have been measured. The slope of the fusion excitation function for ¹³⁰Te+⁵⁸Ni was found to be less steep than that for ¹³⁰Te+⁶⁴Ni in the sub-barrier region. This may be related to the fact that there are ten neutron transfer channels with positive Q-values in ¹³⁰Te+⁵⁸Ni. In contrast, ¹³⁰Te+⁶⁴Ni has only one neutron transfer channel with a positive Q-value. A comparison of the sub-barrier fusion enhancement and the number of neutron transfer channels with positive Q-values in other reactions will be presented.

¹Oak Ridge National Laboratory is supported by the U.S. Department of Energy under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

> Junjien Liang Physics Division, Oak Ridge National Laboratory

Date submitted: 01 Jul 2010

Electronic form version 1.4