Photofission Neutron Yield Ratios on ^{238}U near $E_\gamma = 6.2$ MeV using Linearly Polarized γ rays\(^1\) S. STAVE, M.W. AHMED, N. BROWN, S.S. HENSHAW, J.M. MUELLER, B.A. PERDUE, H.R. WELLER, Duke U/TUNL, H.J. KARWOWSKI, J.R. TOMPKINS, UNC/TUNL, M.S. JOHNSON, LLNL — Neutron yields and the ratios of the yields measured parallel to the plane of γ-ray polarization over the yields perpendicular to the plane of polarization ($I_{\text{par}}/I_{\text{perp}}$) have been measured using a U-238 target for the first time near the (γ, n) threshold of $E_\gamma \approx 6.2$ MeV. Measurements were performed at γ-ray energies of 5.7 MeV (near the photofission threshold) through the (γ, n) threshold up to 6.5 MeV. The $I_{\text{par}}/I_{\text{perp}}$ data taken with the nearly 100% linearly polarized beams at HIγS have values ranging from 3 to 4 in the pure fission region below the (γ, n) threshold to about 2 at energies just above the (γ, n) threshold. In an effort to understand these new data, a model has been developed where the neutrons are emitted isotropically in the center-of-mass frame of the fission fragments. The fission fragment angular distributions are taken from previous γ-ray and neutron induced fission data and are used to predict the values of $I_{\text{par}}/I_{\text{perp}}$ for both the fission fragments and the neutrons. Experimental results will be shown and compared with the results of these calculations.

\(^1\)Supported in-part by DOE (DE-FG02-97ER41033), CMMI-NSF/DHS (0938773), DNDO (2008-DN-077-ARI010) and DNDO (LLNL).