Understanding 3He Nuclei via Quasi-elastic 3He(e,e’d) and 3He(e,e’p) Asymmetry Measurements

VINCENT SULKOSKY, Massachusetts Institute of Technology, JEFFERSON LAB HALL A COLLABORATION — Two-body calculations using realistic wave-functions predicted that the D(e,e’p) asymmetry varies strongly as a function of missing momentum. This prediction has been tested in quasi-elastic D(e,e’p)n experiments in which the predicted sign change of the asymmetry has been observed when the missing momentum is larger than the Fermi momentum. The 3He(e,e’p) and 3He(e,e’d) reaction channels have also been calculated using state-of-the-art Faddeev calculations, and the results indicate that the asymmetry as a function of missing momentum is likewise sensitive to the initial-state wave-function. For Jefferson Lab experiment E05-102, we measured the double spin asymmetries A_x and A_z in the range of recoil momenta from 0 to ~ 200 MeV/c for the quasi-elastic and $x>1$ 3He(e,e’p) and 3He(e,e’d) channels. An overview of experiment will be discussed including an update on the analysis progress.

Vincent Sulkosky
MIT

Date submitted: 01 Jul 2010

Electronic form version 1.4