Abstract Submitted for the DNP10 Meeting of The American Physical Society

 β decay of 69,70,71 Kr A.M. ROGERS, C.J. LISTER, J.A. CLARK, S.M. FISCHER, S. GROS, E.A. MCCUTCHAN, G. SAVARD, D. SEWERYNIAK, ANL, J. GIOVINAZZO, B. BLANK, G. CANCHEL, CENBG/CNRS/IN2P3, G. DE FRANCE, S. GREVY, F. DE OLIVEIRA SANTOS, I. STEFAN, J.-C. THOMAS, GANIL — Proton-rich nuclei beyond the N=Z line play a key role in our understanding of astrophysics, weak-interaction physics, and nuclear structure. The decay of ⁶⁹Kr is of particular interest as it can be used to populate states in the proton unbound nucleus 69 Br. During the rp-process, 2p-capture reactions through ⁶⁹Br can bypass the "waiting-point" nucleus ⁶⁸Se. This depends sensitively on the proton-capture Q-value. An implantation-decay experiment was recently conducted at GANIL which utilized β -p and β - γ correlations to study physics related to the β decay of ^{69,70,71}Kr. Isotopes of Kr were implanted into a DSSD, also used to detect decay protons, located at the end of the LISE spectrometer. Coincident γ -rays from the implant decays were detected in the surrounding EXOGAM clovers. We were able to identify $\sim 200^{69} \mathrm{Kr}$ implantation-decay events, allowing us to extract the energy and constrain the angular momentum of the analog state in ⁶⁹Br as well as improve the prediction for the ⁶⁹Kr mass. An overview of the results from our analysis of 69 Kr β decay will be presented. This work is supported by the U.S. DOE Office of Nuclear Physics, Contract No. DE-AC02-06CH11357.

> Andrew Rogers ANL

Date submitted: 01 Jul 2010 Electronic form version 1.4