Abstract Submitted for the DNP10 Meeting of The American Physical Society

A High-Precision Determination of the Astrophysical Rate for Production of ⁹Be¹ C.W. ARNOLD, T.B. CLEGG, H.J. KARWOWSKI, G.C. RICH, J.R. TOMPKINS, UNC Chapel Hill, TUNL, C.R. HOWELL, Duke, TUNL — New cross section measurements of the astrophysically important ⁹Be(γ ,n) reaction have been made from 1.5 to 5.18 MeV. The measurements were made using the nearly monoenergetic circularly polarized γ -ray beam at Triangle Universities Nuclear Laboratory's High Intensity γ -ray Source. Measurements over narrow resonances employed beams with energy spread dE/E $\leq 1\%$. The energy-dependent absolute efficiency of the neutron counter used in this work was measured to $\pm 3\%$ accuracy. New resonance parameters for the 4 lowest lying states in ⁹Be were determined. A new reaction rate for $\alpha + \alpha + n$ has been determined to better than \pm 5%. The present rate is $\sim 25\%$ larger than two widely accepted rates [1-2] in the temperature range important for r-process nucleosynthesis. The implications of this new rate on r-process and nuclear abundance predictions will be discussed.

[1] C. Angulo et al. Nuc. Phys. A 656 (1999) 3-183.

[2] K. Sumiyoshi et al. Nuc. Phys A 709 (2002) 467-486.

¹Work supported in part by USDOE Office of Nuclear Physics Grants DE-FG02-97ER41041 and DE-FG02-97ER41033.

> C. W. Arnold UNC Chapel Hill, TUNL

Date submitted: 02 Jul 2010

Electronic form version 1.4