A liquid scintillator neutron multiplicity counter for assaying special nuclear material

STEVEN SHEETS, A.M. GLENN, P.L. KERR, K.S. KIM, L.F. NAKAE, R.J. NEWBY, M.K. PRASAD, N.J. SNYDERMAN, J.M. VERBEKE, R.E. WURTZ, Lawrence Livermore National Laboratory — The use of 3-He detectors to infer the mass of a fissioning source from the statistical properties of the neutron multiplicity distribution is a mature technology. We describe a new neutron multiplicity counter using the fast timing of liquid scintillators for the non-destructive assay of special nuclear materials (SNM). A liquid scintillator multiplicity counter (LSMC) that detects fast fission neutrons makes possible a coincidence gate on the order of nanoseconds (vs. tens of microseconds for thermal counters). This allows a LSMC to assay SNM in high rate environments where the fission chains would overlap for a thermal counter. This includes items such as impure Pu with high \((\alpha, n) \) rates as well as low mass HEU where an active interrogation source is needed. Furthermore, the time-of-flight of correlated \(n-\gamma \) pairs allows the LSMC to act as an imager of SNM. We report on the development of a liquid scintillator multiplicity counter at Lawrence Livermore National Laboratory. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Steven Sheets
Lawrence Livermore National Laboratory

Date submitted: 02 Jul 2010