Abstract Submitted for the DNP10 Meeting of The American Physical Society

Azimuthal anisotropy: transition from hydrodynamic flow to jet suppression¹ ROY LACEY, Stony Brook University — The 2nd and 4th azimuthal anisotropy coefficients $v_{2,4}(N_{part}, p_T)$ are scaled with the initial eccentricity $\varepsilon_{2,4}(N_{part})$ of the collision zone and studied as a function of the number of participants N_{part} and the transverse momenta p_T . Scaling violations are observed for $p_T \leq 3 \text{ GeV/c}$, consistent with a quadratic increase of viscous corrections with p_T . The predicted viscous corrections to flow and the thermal distribution function at freeze-out constrain estimates of the specific viscosity $(4\pi \frac{\eta}{s})$ to 1.1 ± 0.1 or 2.1 ± 0.2 and the freeze-out temperature (T_f) to $162 \pm 11 \text{ MeV}$ or $173 \pm 11 \text{ MeV}$ for two different models for the initial collision geometry. For $p_T \geq 3 \text{ GeV/c}$, the apparent viscous corrections exhibit a rapid decrease with p_T , suggesting a breakdown of the hydrodynamic ansatz and the onset of a change from flow-driven to suppression-driven anisotropy.

¹This research is supported by the US DOE under contract DE-FG02-87ER40331.A008.

> Roy Lacey Stony Brook University

Date submitted: 27 Jul 2010

Electronic form version 1.4