Abstract Submitted for the DNP10 Meeting of The American Physical Society

New Partial-Wave Analysis Results for ηN and $K\Lambda^1$ MANOJ SHRESTHA, D. MARK MANLEY, Kent State University — Previous measurements of ηN and $K\Lambda$ resonance couplings were based mainly on simplistic energydependent partial-wave analyses that violated unitarity. In this talk, new results will be presented based on a unitary multichannel partial-wave analysis that includes the channels πN , $\pi \pi N$, γN , ηN , and $K\Lambda$. Partial-wave amplitudes for the isospin-1/2 reactions $\pi N \to \eta N$ and $\pi N \to K\Lambda$ were first obtained at c.m. energies up to 2.1 GeV from single-energy partial-wave analyses of available world data. Then the amplitudes were incorporated into a global energy-dependent fit in order to obtain resonance parameters and energy-dependent amplitudes consistent with S-matrix unitarity. We will discuss the more important amplitudes and compare results from our energy-dependent solution with observables. These results present an important step into developing a partial-wave description of ηN and $K\Lambda$ photoproduction that is fully consistent with information determined from hadronic scattering reactions.

¹This work was supported in part by US DOE Grant No. DE-FG02-01ER41194.

Manoj Shrestha Kent State University

Date submitted: 03 Aug 2010

Electronic form version 1.4