Abstract Submitted for the DNP10 Meeting of The American Physical Society

Measurement of 26Al(d,p)27Al to constrain the 26Al(p,gamma) reaction rate¹ STEVEN PAIN, D.W. BARDAYAN, ORNL, J.C. BLACKMON, LSU, K.Y. CHAE, University of Tennessee, K.A. CHIPPS, J.A. CIZEWSKI, Rutgers University, K.L. JONES, University of Tennessee, R.W. KAVANAGH, California Institute of Technology, R.L. KOZUB, Tennessee Tech., J.F. LIANG, ORNL, C. MATEI, ORAU, M. MATOS, LSU, C.D. NESARAJA, ORNL, P.D. O'MALLEY, W.A. PETERS, Rutgers University, S.T. PITTMAN, K.T. SCHMITT, University of Tennessee, J.F. SHRINER, Tennessee Tech, M.S. SMITH, ORNL, G.L. WIL-SON, University of Surrey — The galactic mapping of the 1809-keV γ ray from the beta decay of ²⁶Al has provided an insight into ongoing galactic nucleosynthesis. Understanding the abundance of ²⁶Al requires knowledge of rate of destruction of ²⁶Al, partially via the ²⁶Al(p, γ)²⁷Si reaction, which is determined by states near the proton threshold in ²⁷Si. Due to the difficulty of measuring these resonances directly, an alternative is to measure mirror states in ²⁷Al to inform the ²⁷Si structure. The spectroscopic strengths of a few known mirror states are the dominant sources uncertainty in the ${}^{26}\text{Al}(p,\gamma){}^{27}\text{Si}$ reaction rate. The ${}^{26}\text{Al}(d,p){}^{27}\text{Al}$ reaction has been measured in inverse kinematics at the HRIBF. A beam of ~ 5 million 26 Al per second impinged on a $\sim 150 \ \mu g/cm^2 \ CD_2$ target. Proton ejectiles were detected in the SIDAR and ORRUBA silicon detector arrays. Details of the experimental setup and data analysis will be presented.

¹Work funded in part by the DoE and NSF

Steven Pain Oak Ridge National Laboratory

Date submitted: 04 Aug 2010

Electronic form version 1.4