Abstract for an Invited Paper
for the DNP11 Meeting of
The American Physical Society

Two-proton radioactivity of ^{48}Ni

KRZYSZTOF MIERNIK, Oak Ridge National Laboratory

In experiment performed at NSCL facility we studied the decay of extremely neutron deficient isotope of ^{48}Ni. Ions were implanted into a gasesous detector, the Optical Time Projection Chamber which allows to record tracks of charged particles. Six events of ^{48}Ni were observed, the two-proton radioactivity (four events) and the β–decay (two events) channels were clearly identified. The half–life of ^{48}Ni is determined to be $T_{1/2} = 2.1^{+1.4}_{-0.4}$ ms. The results of three–dimensional events reconstruction as well as comparison of results with theoretical models will be presented.

1Research performed as a Eugene P. Wigner Fellow and staff member at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725.