Abstract Submitted for the DNP11 Meeting of The American Physical Society

Extracting the photoproduction cross section off the neutron $\gamma n \rightarrow \pi^- p$ from deuteron data with FSI effects IGOR STRAKOVSKY, GWU, VLADIMIR E. TARASOV, ITEP, WILLIAM BRISCOE, GWU, HAIYAN GAO, Duke U., ALEXANDER E. KUDRYAVTSEV, ITEP — The incoherent pion photoproduction $\gamma d \rightarrow \pi^- pp$ is considered theoretically in a wide energy region below 2.7 GeV. The model applied contains the impulse approximation (IA) as well as the NN- and π N-FSI. The aim of the project is to study a reliable way for getting the information on elementary $\gamma n \to \pi^- p$ cross section beyond the IA for $\gamma d \to \pi^- pp$. For the elementary $\gamma N \to \pi N$, $NN \to NN$, and $\pi N \to \pi N$ amplitudes, the results of the GW DAC are used. There are no additional theoretical constraints. The calculated $d\sigma/d\Omega(\gamma d \to \pi^- pp)$ are compared with existing data. The procedure used to extract information on the $d\sigma/d\Omega(\gamma n \to \pi^- p)$ on the neutron from the deuteron data using the FSI correction factor R is discussed. The results show a sizeable FSI effect R \neq 1 from S-wave part of pp-FSI at small angles close to $\theta_1 \sim 0$: this region narrows as the photon energy increases. At larger angles, the effect is small (|R-1| <<1) and agrees with estimations of FSI in the Glauber approach.

¹This work was supported in part by the US DOE Grants DE-FG02-99ER41110 and DE-FG02-03ER41231, by the Russian RFBR Grant No. 02-02-16465, and by the Italian INFN.

Igor Strakovsky GWU

Date submitted: 16 Jun 2011 Electronic form version 1.4