Abstract Submitted for the DNP11 Meeting of The American Physical Society

Beta-Delayed Proton- and Gamma-Decay of ²⁷P for Nuclear Astrophysics¹ E. SIMMONS, L. TRACHE, A. BANU, M. MCCLESKEY, B. ROEDER, A. SPIRIDON, R.E. TRIBBLE, Cyclotron Institute, Texas A&M University, Texas, United States, T. DAVINSON, P.J. WOODS, G.J. LOTAY, J. WAL-LACE, D. DOHERTY, School of Physics, University of Edinburgh, Edinburgh, United Kingdom, A. SAASTAMOINEN, Department of Physics, University of Jyvaskyla, Finland — The creation site of cosmic 26 Al is still under debate. It is thought to be produced in hydrogen burning and in explosive helium burning in novae and supernovae, and possibly also in the H-burning in outer shells of red giant stars. Also, the reactions for its creation or destruction are not completely known. When ²⁶Al is created in novae, the reaction chain is: ${}^{24}Mg(p,\gamma){}^{25}Al(\beta+\nu){}^{25}Mg(p,\gamma)$ γ)²⁶Al, but it can be by-passed by another chain: ²⁵Al(p, γ)²⁶Si(p, γ)²⁷P and it can also be destroyed directly. The reaction ${}^{26m}Al(p,\gamma){}^{27}Si^*$ is another avenue to bypass the production of ²⁶Al and is dominated by resonant capture. We study these resonances by an indirect method, through the β -decay of ²⁷P. We use ²⁷P produced and separated with MARS and a setup which allows increased efficiency for low energy protons and for high-energy gamma-rays. We measure gamma-rays and β -delayed protons emitted from states above the proton threshold in the daughter nucleus 27 Si $(S_p = 7.463 \text{ MeV})$ to identify and characterize the resonances. Its lifetime was also measured with accuracy under 1%.

¹US Department of Energy under Grant No. DE-FG02-93ER40773

E. Simmons

Date submitted: 27 Jun 2011

Electronic form version 1.4