Influence of neutron excess on fusion hindrance in neutron-rich radioactive Sn induced reactions

J.F. LIANG, J.M. ALLMOND, C.J. GROSS, Z. KOHLEY, K. LARGERGREN, P.E. MUELLER, D. SHAPIRA, R.L. VARNER, Physics Division, Oak Ridge National Laboratory, A.L. CARALEY, Department of Physics, State University of New York at Oswego — Fusion enhancement has been observed in reactions induced by neutron-rich radioactive beams at energies near the Coulomb barrier. In heavier systems, fusion is hindered because of quasifission. Whether the hindrance will cancel out the enhancement brought by neutron-rich radioactive nuclei is an open question. We have measured evaporation residue cross sections for neutron-rich radioactive Sn on Ni targets to study the influence of neutron excess on the amalgamation process. A model independent comparison between $^{132}\text{Sn}+^{58}\text{Ni}$ and $^{126}\text{Sn}+^{64}\text{Ni}$ will be made. The isotope dependence of fusion hindrance in $^{124,126,127,128}\text{Sn}$ on ^{64}Ni will be examined.

1This research is supported by the U.S. Department of Energy Office of Nuclear Physics.

J. F. Liang
Physics Division, Oak Ridge National Laboratory

Date submitted: 27 Jun 2011