Exploration of the possible new island of inversion with the production of neutron rich nuclei

T. BAUMANN, O.B. TARASOV, A.M. AMTHOR, L. BANDURA, D. BAZIN, J.S. BERRYMAN, A. GADE, T.N. GINTER, M. HAUSMANN, D.J. MORRISSEY, A. NETTLETON, J. PEREIRA, M. PORTILLO, B.M. SHERRILL, A. STOLZ, C. SUMITHRARACHCHI, M. THOENNESSEN, D. WEISSHAAR, NSCL/MSU, N. FUKUDA, N. INABE, T. KUBO, RIKEN, Japan, G. CHUBARIAN, TA&MU — Recent experiments at the NSCL have demonstrated that fragmentation coupled with two-stage separation technique can be used to explore the properties of very neutron-rich nuclei. Production cross sections for a large number of neutron-rich nuclei produced from the fragmentation of a 76Ge beam at 132 MeV/u with beryllium and tungsten targets were measured, including 15 new isotopes of the elements $17 \leq Z \leq 25$. The higher cross sections of several new nuclei relative to a simple thermal evaporation framework, previously shown to describe similar production cross sections, indicate that nuclei in the region around 62Ti might be more stable than predicted by current mass models. This could indicate the existence of a new island of inversion. This year, a newly-developed primary beam of 82Se at 140 MeV/u has been used to extend these measurements of production cross sections to even more neutron-rich isotopes for elements from calcium to cobalt.

O.B. Tarasov
NSCL/MSU

Date submitted: 04 Oct 2011