Spectroscopy of 244,245,246Pu1 S. HOTA, P. CHOWDHURY, S. LAKSHMI, S.K. TANDEL, T. HARRINGTON, E.G. JACKSON, K. MORAN, U. SHIRWADKAR, University of Massachusetts Lowell, I. AHMAD, M.P. CARPENTER, C.J. CHIARA, J. GREENE, C.R. HOFFMAN, R.V.F. JANSSENS, T.L. KHOO, F.G. KONDEV, T. LAURITSEN, C.J. LISTER, E.A. MCCUTCHAN, D. SEWERYNIAK, I. STEFANESCU, S. ZHU, Argonne National Laboratory — In continuation of high-spin studies in the A~250 region via inelastic and transfer reactions, new spectroscopic measurements have been performed in the neutron rich 244,245,246Pu. High-spin states in these N=150,151,152 nuclei were populated using a 208Pb beam incident on a 244Pu target, with gamma rays detected by the Gammasphere array. In 244Pu, two new bands are observed which follow vibrational characteristics. In 245Pu, new rotational bands are observed through coincidences with the binary reaction partner 207Pb as well as transitions identified in light-ion transfer reactions. The ground state band in 246Pu is extended to $J^\pi = 20^+$. The new results will be discussed in the context of emerging systematics of high-spin spectroscopic data in the Z<100 Cm$_{96}$[1] and Cf$_{98}$[2] isotones. 1. U. Shirwadkar, Ph.D. Thesis, U. Massachusetts Lowell, 2009. 2. S. K. Tandel et. al., Phys. Rev. C 82, 041301(R) (2010).

1Supported by USDOE Grants DE-FG02-94ER40848 and DE-AC02-06CH11357.