Abstract Submitted for the DNP11 Meeting of The American Physical Society

Search for resonant enhancement of the $^{7}Be+d$ reaction¹ P.D. OMALLEY, A. ADEKOLA, J.A. CIZEWSKI, M.E. HOWARD, S.Y. STRAUSS, Rutgers University, D.W. BARDAYAN, K.Y. CHAE, C.D. NESARAJA, S.D. PAIN, M.S. SMITH, Oak Ridge National Laboratory, S. AHN, K.L. JONES, S.T. PITTMAN, K.T. SCHMITT, University of Tennessee, Knoxville, S. GRAVES, R.L. KOZUB, J.F. SHRINER JR., J.L. WHEELER, Tennessee Technological University, M. MATOS, B.M. MOAZEN, Lousiana State University, W.A. PETERS, I. SPASSOVA, Oak Ridge Associated Universities -⁷Li abundances in the early universe extrapolated from observations are several standard deviations lowers than that produced by Big Bang Nucleosynthesis calculations constrained by WMAP. Since most ⁷Li is produced by the beta decay of ⁷Be, one proposed solution to this mystery is a resonant enhancement of the ${}^{7}\text{Be}(d,p)2\alpha$ reaction rate via the $5/2^{+}$ 16.7 MeV state in ⁹B. The ⁷Be(d, d) reaction was done at Oak Ridge National Laboratory to search for such a resonance. This was performed in inverse kinematics using a 10 MeV ⁷Be beam and a thick CD_2 target. Experimental data will be shown and results will be discussed.

¹Work supported by U.S. DOE, NSF, and NNSA SSGF

Patrick O'Malley Rutgers University

Date submitted: 29 Jun 2011

Electronic form version 1.4