Laboratory Tests of Low Density Astrophysical Equations of State

JOSEPH NATOWITZ, Texas A&M University — Clustering in low density nuclear matter has been investigated using the NIMROD multi-detector at Texas A&M University. Thermal coalescence models were employed to extract densities, ρ, and temperatures, T, for evolving systems formed in collisions of 47A MeV 40Ar + 112Sn, 124Sn and 64Zn + 112Sn, 124Sn. The yields of d, t, 3He and 4He have been determined at $\rho = 0.002$ to 0.032 nucleons/fm3 and $T = 5$ to 10 MeV. Symmetry energy coefficients and equilibrium constants for alpha production have been derived from these data. The data provide an important constraint on astrophysical equation of state models at low density.