Abstract Submitted for the DNP11 Meeting of The American Physical Society

⁸**B** Breakup, the Longstanding Puzzle¹ MUSLEMA PERVIN, NSCL, MSU, FILOMENA NUNES, Dept. of PA, NSCL, MSU — The cross section of ⁸B breakup reaction provides an indirect estimate of the ⁷Be(p, γ)⁸B reaction rate. This reaction is important because of its connection to to the solar neutrino problem. At low (stellar) energies the ⁷Be(p, γ) ⁸B reaction is dominated by the electric dipole transition (E1), while the ⁸B breakup reaction rate has a significant contribution from the quadrupole transition (E2). To obtain the astrophysical S-factor S₁₇(E) from different ⁸B breakup experiments we must understand the contribution of E2 to the measured observables. Previous model calculations could not provide an unambiguous estimate of E2. In our present work we use XCDCC (Extended Continuous Discretized Coupled Channel) to explore the impact of the core (⁷Be) spin, deformation and excitation to ⁸B breakup.

¹This work is supported by DOE DE-FG52-08NA28552 and NSF-0800026.

Muslema Pervin NSCL, MSU

Date submitted: 30 Jun 2011

Electronic form version 1.4