Abstract Submitted
for the DNP11 Meeting of
The American Physical Society

Particle-γ Spectroscopy of $^{13}\text{C}(^{134}\text{Te},^{12}\text{C})^{135}\text{Te}$ and $^{9}\text{Be}(^{134}\text{Te},^{8}\text{Be})^{135}\text{Te}$: One-Neutron Transfer Study of $Z=52$, $N=83$ and the $\nu_{13/2}$ State

J.M. ALLMOND, D.C. RADFORD, C. BAKTASH, J.R. BEENE, A. GALINDO-URIBARRI, P.A. HAUSLADEN, J.F. LIANG, J. PAVAN, D. SHAPIRA, R.L. VARNER, C.-H. YU, C.R. BINGHAM, M. DANCHEV, J.P. URREGO-BLANCO, L. CHATURVEDI, D. FONG, J.K. HWANG, W. KROLAS, ORNL — A HPGe and CsI array (CLARION+HYBALL @ HRIBF) is used to study the $^{13}\text{C}(^{134}\text{Te},^{12}\text{C})^{135}\text{Te}$ and $^{9}\text{Be}(^{134}\text{Te},^{8}\text{Be})^{135}\text{Te}$ direct reactions by particle-γ coincidence measurements. The particle-γ technique has several advantages (particularly in inverse kinematics) which include the following: can determine decay paths by particle-γ-γ, can determine high-precision level energies, can determine multipolarities of transitions by particle-γ angular correlations, and can infer cross sections. The use of one-neutron transfer into $Z=52$, $N=83$ is employed to gain selectivity to the single-particle neutron states outside of the $N=82$ shell closure. Results are presented for $^{135}\text{Te}(Z=52,N=83)$; particularly, results are presented for the new $\nu_{13/2}$ single-particle state at 2107 keV.

1Research sponsored by the Office of Nuclear Physics, U.S. Department of Energy.

J.M. Allmond
ORNL

Date submitted: 30 Jun 2011

Electronic form version 1.4