Probing the origins of 19F with the 19F (t, 3He) 19O charge exchange reaction1 AMANDA PRINKE, R.G.T. ZEGERS, SAM M. AUSTIN, D. BAZIN, J.M. DEAVIN, R. MEHARCHAND, K. MEIERBACHTOL, G. PERDIKAKIS, M. SASANO, L.L. VALDEZ, NSCL/MSU, A. COLE, Kalamazoo College, Y. FUJITA, M. NAGASHIMA, Osaka University, C.J. GUESS, UMass Lowell, G.W. HITT, KUSTAR, UAE, Y. SHIMBARA, Niigata University — Nuclear charge-exchange experiments are frequently used to extract Gamow-Teller strengths relevant to astrophysics. This talk will discuss one such recent measurement of the Gamow-Teller strength via the 19F (t, 3He) 19O* reaction at 115 MeV/u. The experiment was performed at the National Superconducting Cyclotron Laboratory using a secondary triton beam, and the 3He ejectiles were momentum-analyzed in the S800 magnetic spectrometer. The extracted Gamow-Teller strength distribution from this experiment can be directly related to 19O* beta decay to 19F. This weak interaction rate may contribute to the astrophysical abundance of 19F. Additionally, the experimental results will be compared to shell-model calculations in the sd-shell.

1This work was supported by the US NSF (PHY-0822648 and PHY-0606007).