Abstract Submitted for the DNP11 Meeting of The American Physical Society

Resonance strengths in ²⁰Ne(p, γ)²²Na and ²²Ne(p, γ)²³Na and the NeNa cycle¹ STEPHANIE LYONS², JOACHIM GOERRES, ANTONIOS KONTOS, ED STECH, MICHAEL WIESCHER, University of Notre Dame — In second-generation stars whose stellar temperature T is greater than 0.05 GK, Hydrogen burning can proceed also via the NeNa cycle which is important for the nucleosynthesis of the Ne and Na isotopes. The stellar reaction rate for ²⁰Ne(p, γ)²¹Na is dominated by the Direct Capture and the high energy tail of a subthreshold resonance. The strength of these nonresonant contributions was measured [1] relative to the strength of the resonance at 1.17 MeV. Because of conflicting results for this reference [2], we have remeasured the strength of this resonance relative to the well-known 1.28 MeV resonance in ²²Ne(p,g)²³Na using implanted Neon targets. In addition, we also performed an independent measurement of the γ branching ratios and the strength of the ²²Ne(p, γ) resonance.

 $\left[1\right]$ C. Rolfs et al., Nuclear Physics A241, 480 (1975)

[2] J. Keinonen et al., Phys. Rev. C15, 579 (1977)

¹This project is funded by the NSF through grant PHY0822648 and the Universities of JINA.

²DOE NNSA Stewardship Science Graduate Fellow

Stephanie Lyons University of Notre Dame

Date submitted: 30 Jun 2011

Electronic form version 1.4