Abstract Submitted for the DNP11 Meeting of The American Physical Society

Double magicity of N=Z nuclei near the rp-process path discerned MADAN M. SHARMA, Kuwait University, Kuwait, JAGDISH K. SHARMA, St. Johns College, Agra, India — We have investigated the experimental isotope shifts in Kr nuclei near the proton drip-line within the framework of the deformed relativistic Hartree-Bogoliubov theory. In this work, we have attempted to answer the question as to why the charge radius of 72 Kr shrinks significantly as against its expected swelling in approaching the proton drip line. It is shown that it happens due to the shell closure observed at N=Z=36 in deformed space, which compactifies the charge radius of 72 Kr. Consequently, we have discerned that N=Z rp-process nuclei ⁶⁸Se, ⁷²Kr, ⁷⁶Sr and ⁸⁰Zr exhibit shell closures both at the proton and neutron numbers in the deformed space with the consequence that pairing correlations for protons and neutrons vanish. This lends a double magicity to these nuclei. Thus, N=Z rp-process waiting-point nuclei are shown to exhibit a magic character similar to that shown by the r-process waiting-point nuclei in the neutronrich region. A significant number of nuclei in rp-process region are also shown to exhibit neutron magicity at N = 34, 36, 38, and 40 in the deformed space.

> Madan M. Sharma Kuwait University

Date submitted: 01 Jul 2011

Electronic form version 1.4