Abstract Submitted for the DNP11 Meeting of The American Physical Society

⁶⁹Kr β -delayed proton emission¹ A.M. ROGERS, C.J. LISTER, J.A. CLARK, S.M. FISCHER, S. GROS, E.A. MCCUTCHAN, G. SAVARD, D. SEWERYNIAK, ANL, J. GIOVINAZZO, B. BLANK, G. CANCHEL, CENBG/CNRS/IN2P3, G. DE FRANCE, S. GREVY, F. DE OLIVEIRA SAN-TOS, I. STEFAN, J.-C. THOMAS, GANIL — Proton-rich nuclei beyond the N = Zline play a key role in our understanding of astrophysics, weak-interaction physics, and nuclear structure tests. In particular, the decay of ⁶⁹Kr populates states in the proton-unbound nucleus ⁶⁹Br. While recent measurements of ⁶⁵As and ⁶⁹Br have constrained key rp- process waiting points, spectroscopic and structural information remains elusive. An experiment was conducted at GANIL which utilized implant- β p and β - γ correlations to study physics related to the β decays of 69,70,71 Kr. Isotopes were implanted into a Si-DSSD, also used to detect decay protons, located at the end of the LISE spectrometer. Coincident γ -rays were measured in surrounding HpGe EXOGAM clovers. We identified 212 ⁶⁹Kr implantation-decay events and observed a dominant superallowed β -decay branch ($T_{1/2} = 27(3)$ ms) to the isobaric analog state which decays via 2.97(5) MeV protons to the first excited state in ⁶⁸Se. This decay path strongly constrains the spin and mass of ⁶⁹Kr.

¹This work is supported by the U.S. DOE Office of Nuclear Physics, Contract No. DE-AC02-06CH11357.

Andrew Rogers ANL

Date submitted: 01 Jul 2011

Electronic form version 1.4