Abstract Submitted for the DNP11 Meeting of The American Physical Society

Studying the αp -process waiting points using Radioactive Ion Beams¹ C.M. DEIBEL, JINA/ANL, M. ALCORTA, P. BERTONE, J. CLARK, C.R. HOFFMAN, C.L. JIANG, B.P. KAY, H.Y. LEE, R. PARDO, K.E. REHM, A.M. ROGERS, ANL, J.M. FIGUEIRA, Laboratorio TANDAR, S. BEDOOR, D. SHETTY, A.H. WUOSMAA, WMU, J.C. LIGHTHALL, S.T. MARLEY, WMU/ANL, M. PAUL, Hebrew University, C. UGALDE, ANL/JINA/U. Chicago — The nucleosynthetic flow in type I X-ray Bursts (XRBs) is driven by the triple- α , rp and αp processes. Several intermediate mass nuclei, ²²Mg, ²⁶Si, ³⁰S, and ³⁴Ar, have been identified as possible candidates for waiting points in XRBs. When such a nucleus is reached, the flow stalls due to (p, γ) - (γ, p) equilibrium and must await β decay unless the (α, p) reaction is fast enough to break out of the waiting point first. A method to study these αp -process reactions has been developed whereby the time- inverse reaction is studied in inverse kinematics using radioactive ion beams produced by the in-flight method at the Argonne National Laboratory ATLAS facility. The reactions $p(^{29}P,^{26}Si)\alpha$, $p(^{33}Cl,^{30}S)\alpha$, and $p(^{37}K,^{34}Ar)\alpha$ have been studied to determine reaction rates for ${}^{26}Si(\alpha, p){}^{29}P$, ${}^{30}S(\alpha, p){}^{33}Cl$, and ${}^{34}Ar(\alpha, p){}^{37}K$, respectively. The results and possible implications for nucleosynthesis in XRBs will be discussed.

¹This work was supported under JINA NSF grant No. PHY0822648 and U.S. DOE contract DE-AC02-06CH11357.

Catherine Deibel JINA/ANL

Date submitted: 06 Jul 2011

Electronic form version 1.4