
— New reactor designs and materials, reprocessing efforts, and transmutation of nuclear waste play significant roles in the future of nuclear energy. New or improved neutron measurements on a number of isotopes are needed to determine feasibility, effectiveness, and safety issues for the novel engineering efforts. Data collection is often hampered by the need for radioactive targets; the use of such targets is limited to longer-lived isotopes due to the large background induced by the decay of the material. However, cross sections for isotopes of interest can be obtained indirectly using light-ion reactions on long-lived neighbors. Decay from the compound state is assumed to be independent of the production reaction, allowing reactions with the neighboring isotopes to be used as a surrogate for the reaction of interest. Results from the neutron-induced fission cross sections of 241Am and 242Am, performed via surrogates 243Am(3He, α'f) and 243Am(3He, 3He'f), respectively, will be shown.

1This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344.

J.J. Ressler
LLNL

Date submitted: 01 Jul 2011

Electronic form version 1.4